If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-133=0
a = 1; b = 4; c = -133;
Δ = b2-4ac
Δ = 42-4·1·(-133)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{137}}{2*1}=\frac{-4-2\sqrt{137}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{137}}{2*1}=\frac{-4+2\sqrt{137}}{2} $
| 22=x/5+12 | | n-1.6=6.4 | | m/3.4=1.5 | | -1/2-8e=18 | | 62=a+16 | | F(x)=x2+2X-3 | | -2.4w=8.4 | | 3x+14=4x+13 | | 2(-5x-10)=2x-12x=6 | | 7xX=63 | | 575x=63.25 | | 2^x=450 | | 692x=173 | | 1-3x=x+19 | | 122k+11=122k+12 | | -4(x+7)=5x-13 | | t+2/3=253/4 | | (2x+9)°=90 | | 4+3r=-8-12 | | 13m=22=9m-6 | | (4p+2)+(5p+7)=180 | | (7x+26)=(4x+29) | | x=-2.5+-1.5x | | 3(2a+1)/4=5(a+5)/7 | | 5x=-3(x+40+28 | | 15x-10=30x-5 | | 2x-1/9=9x+8/18 | | 12=3(m=17) | | 35.6=3.14*r^2 | | 40c=25+60c | | -6x+4=12•3x | | x/100x=50 |